A Generalized Bpx Multigrid Framework Covering Nonnested V-cycle Methods

نویسندگان

  • HUO-YUAN DUAN
  • SHAO-QIN GAO
  • ROGER C. E. TAN
  • SHANGYOU ZHANG
چکیده

More than a decade ago, Bramble, Pasciak and Xu developed a framework in analyzing the multigrid methods with nonnested spaces or noninherited quadratic forms. It was subsequently known as the BPX multigrid framework, which was widely used in the analysis of multigrid and domain decomposition methods. However, the framework has an apparent limit in the analysis of nonnested V-cycle methods, and it produces a variable V-cycle, or nonuniform convergence rate V-cycle methods, or other nonoptimal results in analysis thus far. This paper completes a long-time effort in extending the BPX multigrid framework so that it truly covers the nonnested V-cycle. We will apply the extended BPX framework to the analysis of many V-cycle nonnested multigrid methods. Some of them were proven previously only for two-level and W-cycle iterations. Some numerical results are presented to support the theoretical analysis of this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Errata to "A generalized BPX multigrid framework covering nonnested V-cycle methods"

More than a decade ago, Bramble, Pasciak and Xu developed a framework in analyzing the multigrid methods with nonnested spaces or noninherited quadratic forms. It was subsequently known as the BPX multigrid framework, which was widely used in the analysis of multigrid and domain decomposition methods. However, the framework has an apparent limit in the analysis of nonnested V-cycle methods, and...

متن کامل

Local Multilevel Methods for Adaptive Nonconforming Finite Element Methods

In this paper, we propose a local multilevel product algorithm and its additive version for linear systems arising from adaptive nonconforming finite element approximations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes and global nodes on t...

متن کامل

Multigrid Methods for the Biharmonic Problem Discretized by Conforming 1 Finite Elements on Nonnested Meshes

Abstract. We consider multigrid algorithms for the biharmonic problem discretized by conforming 1 finite elements. Most finite elements for the biharmonic equation are nonnested in the sense that the coarse finite element space is not a subspace of the space of similar elements defined on a refined mesh. To define multigrid methods, certain intergrid transfer operators have to be constructed. W...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations I: on Quasi-uniform Meshes

We prove that the multigrid method works with optimal computational order even when the multiple meshes are not nested. When a coarse mesh is not a submesh of the finer one, the coarse-level correction usually does not have the a(-, •) projection property and does amplify the iterative error in some components. Nevertheless, the low-frequency components of the error can still be caught by the c...

متن کامل

The Analysis of Multigrid Algorithms with Nonnested Spaces or Noninherited Quadratic Forms

We provide a theory for the analysis of multigrid algorithms for symmetric positive definite problems with nonnested spaces and noninherited quadratic forms. By this we mean that the form on the coarser grids need not be related to that on the finest, i.e., we do not stay within the standard variational setting. In this more general setting, we give new estimates corresponding to the "V cycle, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006